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A b s t r a c t .  In order to generate valid convex lower bounding problems for noncon- 
vex twice-differentiable optimization problems, a method that is based on second- 
order information of general twice-differentiable functions is presented. Using inter- 
val Hessian matrices, valid lower bounds on the eigenva]ues of such functions are 
obtained and used in constructing convex underestimators. By solving several non- 
linear example problems, it is shown that the lower bounds are sufficiently tight to 
ensure satisfactory convergence of the aBB, a branch and bound algorithm which 
relies on this underestimation procedure [3]. 
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1. I n t r o d u c t i o n  

The mathemat ica l  description of many physical phenomena, such as 
phase equilibrium, or of chemical processes generally requires the intro- 
duction of nonconvex functions. As the number of local solutions to 
a nonconvex optimization problem cannot be predicted a p r io r i ,  the 
identification of the global opt imum solution of the major i ty  of prob- 
lems of practical importance poses a stimulating challenge. A bru te -  
force approach such as complete enumeration of all solutions is not 
viable. Indeed, it has been shown tha t  such problems are NP-ha rd  
[21]. Despite these difficulties, techniques have been developed tha t  
successfully address some classes of nonconvex optimization problems. 
Deterministic optimization methods usually rely on a bounding proce- 
dure which generates converging sequences of upper and lower bounds. 
It is supplemented by a branching scheme which allows the elimination 
of certain regions of the solution space through successive refinements. 
Complete exploration of the space is thereby avoided, and the global 
solution can be at ta ined in reasonable computat ional  times. Numer- 
ous alternatives are available both for the branching and the bounding 
steps. For the lat ter ,  the tools of interval analysis may be used [9], 
[18], or a valid convex underest imating problem can be constructed 
by exploiting special mathemat ica l  features of the original problem. 
Thus,  if the nonconvexities arise from bilinearities only, the convex 
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envelope described in [2] provides the desired underestimator.  For con- 
cave functions, linearization generates the tightest lower bound. Convex 
underest imators  for several special classes of functions, such as bicon- 
vex, fractional, trilinear and signomial terms have also been developed 
[7],[8], [16], [22], [23]. In the case of an arbi trary nonconvex function, 
the  use of a convex underes t imator  based on second-order informa- 
tion was suggested in [3]. It was incorporated in a b ranch-and-bound  
algorithm, the aBB,  which is based on a difference of convex func- 
tions t ransformation and is applicable to twice-differentiable continu- 
ous optimization problems. However, the rigorous construction of the 
lower bounding problem was only possible in cases where explicit ana- 
lytical expressions could be derived for the eigenvalues or for bounds on 
the eigenvalues of the functions present in the problem. In this paper, 
a new technique is discussed, which provides theoretical guarantees of 
validity for the construction of quadratic underest imators for general 
twice-differentiable functions. 

2. R i g o r o u s  C o n v e x  U n d e r e s t i m a t o r s  

2.1. THE aBB ALGORITHM 

The aBB algorithm [3] is designed to handle problems of the following 
form : 

rain f(x) 
x 

g(x)_< o (1) 
h(x)  = 0 

x E X C _  ~ "  

where f ,  g and h belong to C 2, the set of twice-differentiable functions, 
and x is a vector of size n. 

The algorithm is based on the construction of a b ranch-and-bound  
tree and a difference of convex functions transformation for the lower 
bounding problem. Although many alternatives are available in select- 
ing a branching strategy, all of the schemes advocated for this algorithm 
correspond to a part i t ion of the solution space into rectangular subdo- 
mains. More specific decisions such as which variable(s) to branch on 
or whether  to apply bisection or a higher order section affect the con- 
vergence rate of the algorithm. However, these considerations do not 
modify in any way the theoretical guarantees of global optimality of 
the solution. 

Similarly, the upper bounding step does not present any major  dif- 
ficulties. An evaluation of the optimization problem at a feasible point, 
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or a local solution obtained through a nonlinear optimization package 
such as MINOS 5.4 provide the required value. 

The lower bounding step, on the other hand, must be very carefully 
designed so tha t  a valid lower bound on the problem is obtained at 
all nodes of the tree. For this purpose,  the original problem must be 
t ransformed into an underest imating convex problem, which can then 
be solved to global optimality. In special instances where the functions 
possess known mathemat ica l  properties,  such as bilinearity or concavi- 
ty  for example,  efficient convex lower bounding can be performed using 
the  techniques referred to in the introduction. For general nonconvex 
functions,  it is not possible to resort to a simple scheme such as lin- 
earization. Moreover,  the only condition imposed on the participating 
functions is second-order  differentiability, so that  the underest imating 
procedure  must  be  applicable to any kind of nonconvexity. As noted in 
[15], a twice-differentiable function f ( x )  defined over a region X can 
be underes t imated  by the function £:(x) : 

n 

= f ( x )  + - - 

i----1 

where a is a positive scalar. 
Fur thermore,  it was showed that  this underest imator  is convex if 

and only if the following condition is imposed on a : 

1 
min ~k(x)} (3) a _ max{0 , -2  k,xL<x<x~ 

where the Ak(x)'s are the eigenvalues of the function f ( x ) .  
The  a parameter ,  which governs the convexity of the underesti- 

mator ,  therefore depends on the second-order  characteristics of the 
original function, a may  thus be viewed as a measure of the degree 
of nonconvexity of the function f ( x )  • if f ( x )  is convex over X ,  all 
its eigenvalues are positive and a is therefore zero. a increases as the 
eigenvalues become more and more negative or, equivalently, as f ( x )  
becomes more and more nonconvex. 

In certain cases, an analytical expression may be obtained for the 
minimum eigenvalue of the function f ( x )  over X [13], [14]. However, for 
an arbi t rary  f ( x ) ,  the identification of the smallest eigenvalue requires 
the solution of a nonconvex optimization problem of the form given 
in (4). 

rain 
~,X 

~, ,~n = s . t .  7~ s ( x ,  ;~) = 0 
x L ~ x ,( x U 

(4) 
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where :Py(x, ~) is  the characteristic polynomial of f (x) .  
Since problem (4) cannot be solved to global optimality using cur- 

rently available techniques, an exact value for ~,~i,~ cannot be obtained. 
An alternative approach to calculating a is therefore required• Accord- 
ing to equation (3), a valid lower bound on ~mi,~ suffices for the genera- 
tion of a convex underestimator.  This allows a relaxation of problem (4) 
to a more tractable form, through interval analysis. It is first noted that  
the coefficients of the characteristic polynomial Py(x,  ~) depend on the 
z variables so that  Py(x,  A) represents a family of polynomials with real 
coefficients. If the natural  interval extensions of the coefficients over the 
domain X are evaluated, the polynomial family P ] (x ,  ~) can then be 
transformed into a larger family Py (Z ,  ~)where  all the coefficients of 
Py(X, ~) are intervals. Because the initial family is included into the 
interval family, the minimum root of the latter provides a valid lower 
bound on the smallest eigenvalue of f (x) .  

The family 7)y(X, ~) contains an infinite number of polynomials, and 
the identification of the spectrum of its roots appears as a challenging 
problem. The seminal work of Kharitonov [12] stands as a powerful 
starting point in tackling it, for it allows the determination of the sta- 
bility characteristics of arty interval polynomial family. A description of 
how Kharitonov's theorem can be incorporated into a method for the 
calculation of lower bound on ~,~in is given in [1]. Considering that  the 
derivation of the interval polynomial family from the Hessian matrix 
of f (x )  is a computationally expensive task, advantage can be taken of 
Kharitonov-like techniques for the computat ion of extreme eigenvaiues 
of interval matrices which have been developed in recent years [10], 
[11]. By working in the matrix space, construction of the characteristic 
polynomial is avoided. 

2.2. INTERVAL HESSIAN MATRICES 

The Hessian matr ix Hf(x)  of a twice-differentiable function f (x )  defined 
over X can be transformed into an interval matrix Hf,x. Just as is the 
case for the characteristic polynomials, the set of matrices described by 
Hy,x contains those defined by Hi(x) .  

(  11(x) . . .  a l . ( x ) )  
Hs(x)  = 

. . .  

c 

L U 
[~11~ {Zll] 

Hy,x = 
L U 

• --. 

• . .  a ~ n  ] 

(5) 
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Hessian matrices possess interesting properties in tha t  they are sym- 
metric  and their  eigenvalues are real. Some valuable results that  exploit 
these characteristics were presented in [10]. It was shown tha t  the eigen- 
values of all the matrices in the family Hf,x are bounded by the extreme 
eigenvalues of a subset of these matrices. In order to determine a lower 
bound on the smallest eigenvalue Amin, it suffices to compute the mini- 
mal  eigenvalue of 2 n-1 vertex matrices of HLx.  Furthermore,  a simple 
rule was developed, allowing the generation of the necessary matrices. 

By definition, A,~i,~ can be expressed as 

Atom = rain ( m i n  rT Hr) (6) 
H~_H1,x-i l r l l= 1 

where r is a real n-dimensional  vector, and H is a real matr ix  with 
elements a11," • ", a,,,~, and belongs to the interval matr ix  family HLx.  
Note tha t  the  set of all vectors r spans the surface of the unit sphere. 

The challenges presented by problem (6) can be circumvented by 
devising simple rules tha t  identify a priori the real matr ix  H* E Hy,x 
which minimizes the quadratic form rTHr for all vectors r satisfying 

II r I1= 1. 
Equation (6) can be rewri t ten as 

n 

A,-~m = rain ( m i n  E a i i r ~  + ~ aijrirj) 
I-IeHf,x'JlrJJ=x i=1 ~<,,/_<,, 

(7) 

n 

= rain +  ,jr, rj) ( min rain ( ~-~ 
neHj,x Ilrll=l ~ Ilrll=l ~_<~,~_<,, 

n 

= rain (~}-~ a.L.r 2-~ + min ( min ~ a i j r i r j )  
I l r l l = l ' Z - ~  " ' J HeHf'x'llrll=l 1 < ~ , ~ < ~  

i = 1  _ _ 

(8) 

(9) 

Thus, the  first t e rm has been reduced to a minimization over the 
surface of the unit sphere and the diagonal elements of the desired 
mat r ix  H* have been identified as the lower bounds of the diagonal 
elements of the interval matr ix  HI,x. The second term could be sim- 
plified in a similar manner  if the sign of the product r i r j  were known. 
Thus, if rirj < O, the (ij) and (ji) elements of H* should be equal 
to a~,  while if r i r j  >_ 0, they should be equal to a~.  This reduction 
can be achieved by noting tha t  the n-dimensional  space can be divid- 
ed into 2 n or thants  inside of which the signs of the elements of vector 
r remain unchanged.  Within each of these orthants,  the sign of every 
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cross product  rirj, (i, j) C {1 , . - - ,  n} ~, is also conserved. Moreover, due 
to symmet ry  about the origin of the coordinate system, there are only 
2 '~-1 possible combinations of the signs of these cross products,  so that  
2 '*-1 or thants  are sufficient to describe all the sign preserving domains 
of the r i r j  products.  Let Rk denote the set of vectors r which belong 
to the k th  or thant  and for which I[ r []= 1. Then, for each or thant  k, 
the real mat r ix  H~ E Hy,x which minimizes rTHr can be constructed 
according to the following rule : 

where 

H• = [a~j] Vk E { 1 , . . . , 2  n - l }  (10) 

{!i i i=j ai~ = .. if xix d >_ O,i # j (11) 
if xizj < O,i ¢ j 

Therefore,  the minimum eigenvalue of the family of matrices HI,x 
is given by 

~rnin = min ( rain rTH~r)  
k=1,...,2 n-1 rERk (12) 

Iriln ~k,min 
&=l,... 2 n -1  

where :kk,mm is the minimum eigenvalue of matr ix  H~ as defined in 
equation (11). 

Note tha t  all 2 "-1 H* matrices are vertex matrices, that  is their 
elements are endpoints of the intervals that  appear in matr ix  HI,x. 
Furthermore,  these real matrices are symmetric  ( r / r / =  rdri), and their 
eigenvalues are therefore real. 

S tandard  methods  can be used in order to calculate the minimal 
eigenvalue of the each vertex matrix.  For instance, the rational QI~ 
method  with Newton corrections [19] can be applied on the matrix,  
after reducing it to a symmetr ic  tridiagonal matrix.  

Two simple examples are provided here in order to illustrate the 
procedure.  

E x a m p l e  1 
The following third order polynomial in two variables is studied : 

f ( x l ,  x2) = x a - zlx~ with (xl ,  x2) e X = [0, 1] ~. 
Its Hessian mat r ix  is 

6~1 
H 1 ( x l , x 2 )  = -2x2  

- - 2 x 2  [-2,0j [-2,0]) 
The four sign preserving regions for xl and x2 are : 
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Xl X2 XlX2 

+ ÷ + 
-Jff -- __ 

-- 2 i- -- 

Only the  first two quadrants (xl,  x2 >_ 0 and X 1 ) 0, X2 ( 0 )  need to 
be taken into consideration. The two vertex matrices are then 

. 

H1 = - - 2  0 

and their  smallest eigenvalues axe )~l,,~in = - 1  -v / -5  and ~2,~,i,, -~ - 2 .  
Hence A,~i,~ > -3 .24 .  The exact value of Amin can also be calculated 
for this example (using GAMS [4], for example). It was found that  
)~ r n  i n ~'~ - - 2 . 5 .  

E x a m p l e  2 
The second example presented here is a function of two variables involv- 
ing tr igonometric  terms : 

f (Xl ,  X 2 )  = ~1  COS X 2 "-~ X 2 s i n  X l ,  where (xl ,  x2) E X = [0, 1] 2. 
The corresponding Hessian matr ix  is 

( - x 2  s inxl  - sinx2 + c o s x l )  
H / ( x l , x 2 ) =  - s i n x 2 + c o s x l  -XlCOSX2 

(E-0.s42,01 E-0 a02,11) (13) 
c Hs,x= [-0.302,1] [-1,0] 

The following two vertex matrices are needed in order to evaluate the 
smallest eigenvalue : 

. . 

H1 --- -0 .302 - 1  and H2 -- 1 - 1  

The two minimum eigenvalues are Al,mi,~ = -1.234 and A2,mi,~ -- 
-1 .925.  This yields a lower bound of -1 .925 on the smallest eigen- 
value of H f ( x l ,  x2) over X.  The exact value is -1 .27.  

2.3. A N A L Y S I S  O F  T H E  I N T E R V A L  H E S S I A N  M E T H O D  

The computat ional  effort required by the interval Hessian matr ix  tech- 
nique depends exponentially on the number of variables that  partic- 
ipate in the original function. An approach based on the decomposi- 
tion of the  functions under consideration into the sum of several terms 
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seems especially valuable in this context. In addition, it is amenable 
to the exploitation of mathematical properties (concavity, bilinearity) 
that may be identified for some of the terms. Even for highly nonlinear 
functions, it is likely that each individual term only involves a fraction 
of the independent variables. Thus the generation of one a per term 
in a function is expected to be much faster than that of one a for the 
entire function. When using the aBB algorithm, functions can therefore 
be decomposed as : 

bt u t  n t  

f ( x ) - -  L T ( x ) + C T ( x ) +  ~--~BT,(x) + ~ UTi(x) + ~-~'NTi(x) (14) 
i = l  i =1  i=1  

where LT is hnear term, CT is a convex term, the BT's are bihnear 
terms, the UT's are univariate concave terms and the NT's  are gen- 
eral nonconvex terms, bt, ut and nt denote the numbers of bilinear, 
univariate concave and general nonconvex terms respectively. 

The value calculated for ~min corresponds to the exact minimum 
eigenvalue for the interval matrix family HLx. However, the fact that 
the elements of the Hessian matrix of an arbitrary function are not in 
general independent is overlooked when deriving Hf,x. This results in 
an overestimate of the family of matrices encompassed by H/ (x )  as 
x varies in X. Amin is then a lower bound on the eigenvalue needed, 
whose quality depends on the functionality of the elements of H/(x) ,  
as well as on the tightness of the bounds on the variable vector x. An 
update of the bounds on the variables, as well as the calculation of 
new a values at each iteration of the algorithm can therefore lead to 
significant speed improvements. 

3. A Case Study 

The a calculations for a highly nonhnear function are studied in order 
to test the performance of the interval Hessian matrix method. 

The illustration presented here involves a single variable, so that 
attention can be focused on the graphical analysis of the proposed 
approach. As the solution space is partitioned into several subdomains, 
the change in a value is recorded, and the improvement in the quality 
of the lower bounding function is monitored. The piecewise convex 
underestimator of the overall function, generated by constructing one 
lower bounding function per subspace according to equation (2), is 
plotted for different domain sizes. The exact c~ value can be obtained 
by repeatedly solving the NLP described in (4) from different starting 
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points. Comparison of the values thus calculated with those provided 
by the interval Hessian method also yields valuable information. 

The chosen example is that  of the molecular conformation of pseu- 
doethane, an ethane molecule in which all the hydrogen atoms have 
been replaced by C, N or 0 atoms. It is taken from [15], where the 
global minimum potential energy conformation of small molecules is 
studied. The Lennard-Jones potential is expressed in terms of a single 
dihedral angle. 

The potential  energy of the molecule is given by 

/ ( t )  = 588600  

(3r~--4 c o s O r ~ - - 2  (sin 2 6 cos(t--~)--cos 2 H)r~) 6 
1079.1 

(3 ~0 ~ -4  co~ 8~0 ~-  ~ ( s ~  e oos(~- ~ ) - c o s 2  & 0  ~ )3 
6 0 0 8 0 0  - - -F 
sln 2 ecos ~ --cos 2 ~ r 2 6 (~0~-4cos~-~-(;O~l.S () ) 0) 

(3,0~-4 cose%~-2 (si.~ e Cos(O-cos2 &0~) ~ 
_~ 481300  

(3 ~-~ cos e~0 ~-2 (si~ ~- e cos(~+ ~)-cos: e),~)° 
1064.6  

(~,0~-4 cos e,.o~-~ (s~ e cos(~+~)-cos~ e)%~) ~ 

where r0 is the covalent bond length (1.54~i), 
is the covalent bond angle (109.5°), 

t is the dihedral angle (0 < t < 2~r). 

Note that  the contribution from 1-2 and 1-3 atom interactions have 
not been included in the above formulation since they are constant. 

It can be seen from Figure 1 that  this highly nonlinear function 
exhibits three minima in the range [0, 2~r]. The two local minima occur 
at t -- 61.42 ° and t = 296.12 °, where the potential energy takes on 
values of-0.7973 kcal/mol and -1.0399 kcal/mol respectively. The global 
minimum of-1.0711 kcal/mol is observed at t = 183.45 °. 

Table I shows the exact and computed a 's  for the first four partitions 
of the solution space, while Table II summarizes the results for subse- 
quent levels. The accuracy of the calculated a values is seen to improve 
rapidly as the size of the search domain is reduced, confirming the 
importance of supplying tight variables bounds. The numerical value 
of a is not sufficient to assess the performance of the method since the 
convergence of the algorithm is largely determined by the separation 
distance between the function and its underestimator,  which depends 
both on a and the size of the solution space. Tables III and IV give the 
maximum separation distance for the exact and interval Hessian cal- 
culations. Although the former provide much tighter underestimators 
at the initial levels of the tree, the latter decreases at a faster rate. By 
plotting the piecewise convex lower bounding function at every level in 
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v V , V  

Figure 1. Potential energy of pseudoethane as a function of the dihedral angle. 

the tree, the rapid improvement in the quality of the underestimator 
can be visualized (Figures 2 and 3). 

When the aBB algorithm is used to identify the global optimum 
solution, convergence to within 10 -s  is achieved in 21 iterations and 
1.1 CPU seconds on an HP/730. Figure 4 shows the branch and bound 
tree as explored during the aBB run. Although the search is initially 
breadth-first,  most nodes on level 5 are fathomed and the solution is 
quickly identified as the underestimator tightens. Figure 5 provides the 
branch and bound tree obtained by using the exact a value for each 
region. It can be seen that the search also starts as a breadth-first 
process, which then changes to follow depth-first pattern. The global 
solution is identified at level 6, one level higher than with the interval 
Hessian matrix method. For an unconstrained optimization problem in 
one variable such as this one, the exact eigenvalue at each level can be 
identified with the help of graphical analysis. 

Due to the use of interval arithmetic in the Hessian matrix method, 
it is important to derive a mathematical expression for the second-order 
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derivatives which will reduce the occurence of interval over-estimation. 
In the case of pseudoethane,  it is interesting to note that  bet ter  esti- 
mates  of the eigenvalue are generated if the potential function is not 
differentiated in the dihedral angle space but  in the r space, where r 
is the distance between two atoms. Once the r -space  Hessian has been 
obtained,  it can be expressed in terms of the dihedral angle through a 
t ransformat ion of coordinates. At the first level, for example, a value of 
620 is obtained for c~, as compared with approximately 38,000 using dif- 
ferentiation in the dihedral angle space. The algorithm terminates after 
15 i terations and 0.9 CPU seconds. In some instances where explicit 
expressions for the eigenvalues are not av~lable, the user may there- 
fore be able to provide expressions superior to those obtained through 
direct differentiation. 

4. Summary of Computational Experience 

The c~BB algori thm may be used to solve a variety of problems, and 
this section presents preliminary results obtained for a selection of non- 
convex problems with different mathemat ica i  structures. The compu- 
tat ional  results are summarized in table V. HP1 [6] is a Haverly pool- 
ing problem in which the nonconvexities arise exclusively in bilinear 
terms.  Branin, Har tman  and Goldstein [5] are highly nonlinear stan- 
dard unconstra ined test problems. The first involves a combination of 
polynomial  and tr igonometric terms,  the second is the sum of two expo- 
nential  terms and has two minima. The lat ter  is an eighth degree poly- 
nomial in two variables. CNC [17] is a highly nonconvex constrained 
test  problem. Finally~ HEN [6] is a heat exchanger network optimization 
problem, while I~N [20] is a reactor network configuration prob]em. 

5. Conclusions 

The aBB algori thm presented in [3] is a valuable tool for the global 
optimization of nonconvex twice-differentiable problems. The main dif- 
ficulty encountered is the generation of convex underest imating prob- 
lems, which requires the  calculation the minimum eigenvalues of the 
functions involved, or of a valid lower bound on these eigenvalues. In 
this paper,  a rigorous method  for the generation of a lower bound on 
the eigenvalues of a function defined over a given interval has been 
described. This technique is characterized by the use of interval Hes- 
sian matrices and a mathemat ica l  complexity of the order of 2 '~-~ where 
n is the  number  of variables in the function being studied. Using this 
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procedure, a small highly nonlinear example has been extensively stud- 
ied and the convex underestimators were seen to tighten significantly as 
the solution space is partitioned. As a result, convergence was achieved 
within a few levels of the branch and bound tree. The algorithm has also 
been used successfully to solve a number of highly nonconvex problems. 
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Table I. Exac t  and calculated a s for the pseudoethane 
potent ia l  energy funct ion 

Level Search Domain Exact  a Calculated 

1 [0, 2~r] 10.7 3.8 104 

2 [0, r] 10.7 9.5 l0 g 
2 [~r, 28-] 10.7 8.6 103 

3 [0, 3] 10.7 944.2 
3 [3, ~] lo .4 298.9 

[Tr 3~1 3 L , -~-J 7.9 262.0 
3 [ %  2~] 10.7 869.2 

4 [0, ~] 10.7 56.8 

4 [~, 3] 0 93.5 

4 [3, ~i ~] 10.4 41.3 
4 [~, ~] 5.5 87.0 
4 [~, ~] 4.0 75.8 
4 [-~,  ~ v ]  7.9 34.5 
4 [?'-~'2 ~ ]  0 84.4 

4 [Y~, 27r] 10.7 56.7 

Table II. Range for exact  and calculated a s for 
the  pseudoethane  potent ia l  energy function 

Level Interval  Range for Range for 
width exact  ol Calculated 

5 -~ 0 - 10.7 10.2 - 23.5 
8 

6 ~--- 0 - 10.7 2.8 - 14.0 
7 ~ 0 - 10.7 0 . 0 -  10.7 

32  

8 *r 0 - 10.7 0.0 - 10.7 
64  
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Table III. Max imum separat ion dis tance between function 
and underes t imator .  £:* denotes the exact  lower bound- 
ing funct ion while /:  corresponds to the  Hessian mat r ix  
calculat ion 

Level Search Domain  m a x ( f - / : * )  m a x ( f -  £ )  

1 [0, 2~] 105.6 3.8 10 ~ 
2 [0, ~r] 26.4 2.3 104 

2 [;r, 2~r] 26.4 2.1 104 

3 [0, ~] 6.6 582.4 

3 [~-, ] 6.4 184.4 
3 [~r, 3~] 4.9 161.6 

2 

3 [ ~ ,  27r] 6.6 536.2 

4 [0, ~] 1.7 8.8 
4 [9, ~] 0 14.4 

[,r 3,r 1 4 t~,  -£-J 1.6 6.4 
4 [-~,  r]  0.8 13.4 

4 [~, ~1 0.6 11.7 
4 [~, ~] 1.2 5.a 4 2 

4 [~,~ ¥ ]  o 13.0 
4 [ ¥ ,  2~] 1.7 8.7 

Table  IV. Range  of max imum separat ion distance 
be tween funct ion and underest imator .  £* denotes 
the  exact  lower bounding funct ion while £ corre- 
sponds to the  Hessian mat r ix  calculat ion 

Level Interval  Range of Range of 

width  m a x ( f  -- £:*) m a x ( f  -- ,C) 

5 -~ 0 -- 0.413 0.393 - 0.906 S 

6 ~ 0 - 0.103 0.027 - 0.135 16 

7 ~ 0 - 0.026 0 - 0.026 32 
8 ~ 0 - 0.006 0 - 0.006 64  

Table V. S u m m a r y  of Computa t iona l  Results 

P rob lem Number  of Number  of Number  of C P U  t ime 

N a m e  Variables Const ra in ts  I terat ions  (s) 

HP1 9 6 17 2.1 

Branin  2 0 44 2.0 

H a r t m a n  1 0 22 0.8 
Goldstein 2 0 1092 181 

C N C  5 6 587 258 

H E N  8 6 286 677 

RN 6 5 24 22 
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Figure 2. Function and underestimator at different levels of the branch-and-bound 
tree using calculated c~ values 
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Figure 4. c~BB branch and bound tree for pseudoethane example, using calculated 
O/ v a l u e s  

Figure 5. aBB branch and bound tree for pseudoethane example, using exact 
values 


